Course Syllabus for CSE-424

1. Title: Digital System Design (Sessional)

2. Credits: 1.5 (3 hours of lab work per week)

3. Course Teacher: Dr. Asaduzzaman, Professor, Dept. of CSE, CUET Md. Billal Hossain, Lecturer, Dept. of CSE, CUET

4. Learning Resources:

Textbook(s): Morris Mano, Charles R. Kime, Madison; Tom Martin, -- Logic and computer design fundamentals, FIFTH EDITION (2015) Pearson

Reference:

Alan B. Marcovitz, -- Introduction to Logic Design, Third Edition, McGraw-Hill

M. Morris Mano and Michael D. Ciletti, -- Digital Design with an Introduction to the Verilog HDL (FIFTH EDITION, 2015), Pearson

5. Catalog Description: Sessional based on the following topics:

Register transfer logic, Hardware description language, inter register transfer, bus transfer, memory transfer, microoperations and macrooperations, design of bus systems, representation of digital data in registers and memory, design of a simple computer. Processor organization, design of arithmetic logic unit (ALU), status register, design of shifter, design of processor unit, design of accumulator. Control Logic Design, Control organization, Design of hardwire and software control, Micro-program sequencer. Computer Design with a given System configuration: Instruction set, Programming, Fetch cycle, Execution cycle, Design of computer registers, Design of control, Bus buffer and memory cycle of microcomputers. Design of memory subsystem using SRAM and DRAM. Design of various I/O devices and systems. Design special purpose controllers

6. Prerequisite(s): CSE-121, CSE-122 and CSE-321

7. Course Designation as Elective or Required: Required

8. Course Objectives:

(a) Familiarization with the Digital System Design tools (VHDL, Xiling, etc.) and hardware equipment

- (b) Introduce the concept of various component design and use them to design a digital computer
- (c) Design and analyze a complete digital system by combining various components

9. Student Learning Outcomes: After successfully completing the course with a grade of D (2.0/4.0) or better, the student should be able to do the following

No.	Course Outcomes (COs)
1	Analyze the design principle of a digital system to decompose the whole system in
	various modules using modular approach
2	Design various Modules of a digital computer such as Adder, Arithmetic unit, ALU
	memory, processor, etc.
3	Implement and Analyze the design components using modern design tool (VHDL) and
	traditional hardware based system

Course Code: CSE-424

Session: 2018-19

10. Mapping of Program Outcomes Addressed by COs

CO-PO mapping

CO#	Program Outcome (PO)	PO#
1	Problem analysis: Identify, formulate, research literature and analyse complex	2
	engineering problems reaching substantiated conclusions using first principles	
	of mathematics, natural sciences and engineering sciences.	
2	Design/Development of solutions: Design solutions for complex engineering problems and design systems, components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.	3
3	Modern tool usage: Create, select and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling, to complex engineering problems, with an understanding of the limitations.	5

CO—PO—WP—WA Mapping

		Programs Outcomes (PO)												ng	
No ·	Title of Course	Engineering Knowledge	Problem Analysis	Design	Investigation	Modern Tools	Engineers and Society	Environment and sustainability	Ethics	Teamwork	Communication	Project Management and Finance	Life-long Learning	Complex Engineering Problem Solvi	Complex Engineering Activities
1.	CSE-423: Digital System Design (Theory)	×	×	×										×	
2.	CSE-424: Digital System Design (Sessional)		×	×		×								×	

COMPLEX PROBLEM SOLVING							COMPLEX ACTIVITIES					KNOWLEDGE PROFILE																					
		EL		Dep	oth of	WP1 know	vledge	;	WP2	WP3	WP4	WP5	WP6	WP7	EA1	EA2	EA3	EA4	EA5		PO1				COU	F02		PO3	P04	PO5	PO6	P07	PO8
	TITLE	IY LEV		WK3	WK4	WK5	WK6	WK8		ΪD		E S						&		WK1	WK2	WK3	WK4	WK1	WK2	WK3	WK4	WK5	WK8	WK6	WK7	WK7	WK7
NO	COURSE CODE &	BLOOM'S TAXONOM	POs	ENGINEERING FUNDAMENTAL	SPECIALIST KNOWLEDGE	ENGINEERING DESIGN	ENGINEERING PRACTICE	RESEARCH LITERATURE	RANGE OF CONFLICTING	DEPTH OF ANALYSIS REQUIRE	FAMILIARITY OF ISSUES	EXTENSIVE APPLICABLE CODI	STAKEHOLDERS INVOLVEMENT & CONFLICTING REQUIREMENTS	INTERDEPENDENCE	RANGE OF RESOURCES	LEVEL OF INTERACTIONS	INNOVATIONS	CONSEQUENCES TO SOCIETY ENVIRONMENT	FAMILIARITY OF ISSUES	NATURAL SCIENCES	MATHEMATICS	ENGINEERING FUNDAMENTAL	SPECIALIST KNOWLEDGE	NATURAL SCIENCES	MATHEMATICS	ENGINEERING FUNDAMENTAL	SPECIALIST KNOWLEDGE	ENGINEERING DESIGN	RESEARCH LITERATURE	ENGINEERING PRACTICE	COMPREHENSION	COMPREHENSION	COMPREHENSION
1	CSE-424: Digital System Design (Sessional)	C3, C4, A3, P3	2, 3, 5	X	X	X	X			X				X												X	X	X		X			

Mapping of Complex engineering problem/ complex activities/knowledge profile

11. Assessment Strategy:

Mapping of Tasks with POs, WPs, WKs and EA

Possible tasks	Course Outcomes (CO)	Program Outcomes (PO)	Knowledge Profile (WK))	Complex Engineering Problem (WP)	Complex Engineering Activities (EA)	
T-1: Decompose the whole design problem into sub problems using modular approach considering multiple solutions		PO2:	WK3	WP1: Depth of Knowledge	N/A	
T-2: Identify the specific requirements and constraints involved in designing each of the modules or sub problems	CO-1	Problem Analysis	WK4			
T-3: Design various Modules of a digital computer such as Adder, Arithmetic unit, ALU memory, processor, etc.	CO-2	PO3: Design/ Development Solutions	WK5	WP3: Depth of Analysis Required		
T-4: Use of modern tool in analysis and design of components	CO-4	PO5: Use of Modern Tools:	WK6	WP7: Interdependence		

ASSESSMENT RUBRIC:

Task No.	Criteria	Assessment Tools	Exceptional	Acceptable	Marginal	Unacceptable
T-1	Draw the block diagram and logic diagram of the system	Report Quiz	Complete diagram of the system with valid logical reasoning that uses minimum number of components	Complete diagram of the system with valid logical reasoning that uses an acceptable level of redundancy	Complete diagram of the system with valid logical reasoning that uses a lot of redundancy	Complete diagram of the system with invalid logical reasoning
T-2	Use of appropriate components	Report & Quiz	Explore available alternatives and select appropriate components	Explore limited alternatives and select appropriate components	Explore limited alternatives and select complex components still serving the purpose	Explore limited alternatives and select inappropriate components
T-3	Use of formal design procedure	Report	Effective use of system design principles ensuring the desired objectives	Reasonable use of system design principles ensuring the desired objectives	No Effective use of system design principles still meeting the desired objectives	No Effective use of system design principles and fails to ensure the desired objectives
T-4	Analyze the design using of software Tools	Report & Lab Performance	Standard software tools are used effectively to develop and analyze the designs	Standard software tools are used with moderate effectiveness to develop and analyze the designs	Minimal application and use of Standard software tools	Inappropriate application and use of Standard software tools

Lesson Plan

`	Торіс	Lesson Learning Outcomes and corresponding CO (at the end of the lesson students will be able to)	Corresponding COs	Assessment Method
Week-01	Introduction to the Digital System Design Lab	 Lab orientation with safety instructions Identify various devices and equipment of Digital System Design Lab Install and use of VHDL software 	NA	NA
Week -02	Introduction to VHDL	 Use VHSIC (very high speed integrated circuit) hardware description language (VHDL) to design digital system Explain VHDL language concept and design methodology 	NA	• Lab Report
Week -03	Implementation of Full Adder and parallel adder Circuit in Dataflow, Behavioral & Structural Design Process in VHDL	 Compare three different VHDL design methodology Use the concept of modular approach in practical design Simulate the design using 'testbench' to verify the input output relations 	3	 Lab Report Lab Performance (Individual)
Week -04	Implementation of Different Sequential Circuits in VHDL	 Compare the design requirements of combinational and sequential circuit Simulate the design using 'testbench' to verify the input output relations 	3	 Lab Report Lab Performance (Individual)
Week -05	Implementation of a 4-bit Register and counter in VHDL	 Realize synchronization among various components of a complex system Interconnect various time dependent components. Simulate the design using 'testbench' to verify the input output relations 	3	 Lab Report Lab Performance (Individual)

Week -06	Implementation of register transfer statements in hardware	 Draw the block diagram/Logic diagram representation of the hardware Identify appropriate LSI or MSI ICs for each block Implement the design and analyze its operation. 	1 & 2	 Lab Report Lab Performance (Team)
Week -07	Design and Implementation of an 4- bit Arithmetic Circuit	 Use systematic design procedure to design an Arithmetic Circuit with given set of operation Identify appropriate components (LSI or MSI ICs) for each block of the design Implement the design in hardware as well as in VHDL and analyze its operation 	1, 2 & 3	 Lab Report Lab Performance (Team)
Week -08	Design and Implementation of an Arithmetic Logic Unit (ALU) in VHDL	 Use systematic design procedure to design an ALU with given set of operation Identify appropriate VHDL design method Implement the design in VHDL and analyze & synthesis the design for optimization 	1, 2 & 3	 Lab Report Lab Performance (Team)
Week -09	Design and Implementation of a 4-bit Combinational Shift Unit	 Use systematic design procedure to reduce the number of clock pulse with given set of operation Identify appropriate components (LSI or MSI ICs) for each block of the design Implement the design in hardware as well as in VHDL and analyze its operation 	1, 2 & 3	 Lab Report Lab Performance (Team)
Week -10	Performance test	• Individually solve open-ended hardware design problem using VHDL	1, 2 & 3	• Lab Performance (Individual)
Week -11	Viva-voce		NA	• Individual
Week -12	Quiz		NA	• Individual Test